Abstract
This paper proposes a novel finite-time adaptive neural control method for a class of high-order nonlinear systems with high powers in the presence of dead zone input nonlinearities and unmodeled dynamics. By utilizing prescribed performance functions and radial basis function neural networks, the tracking error and state errors are limited within the preassigned range in a finite time, which can be specified by the designer in advance according to the chosen the parameters of the novel prescribed performance functions. Nonlinear transformed error surfaces are designed to counteract the effects of dead zone input nonlinearities in nonlinear high-order systems with unknown system nonlinearities and unmodeled dynamics. Based on the Lyapunov theorem, the tracking errors are proven to converge into a preassigned set in a finite time previously specified by the novel prescribed performance function. Finally, simulation results demonstrate the effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Natural Science Foundation of the Shaanxi Province, China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering