Finite-Time Adaptive Neural Control Scheme for Uncertain High-Order Systems with Input Nonlinearities and Unmodeled Dynamics

Author:

Mei HantongORCID,Huang Hanqiao,Guo Yunhe,Huang Guan,Xu Feihong

Abstract

This paper proposes a novel finite-time adaptive neural control method for a class of high-order nonlinear systems with high powers in the presence of dead zone input nonlinearities and unmodeled dynamics. By utilizing prescribed performance functions and radial basis function neural networks, the tracking error and state errors are limited within the preassigned range in a finite time, which can be specified by the designer in advance according to the chosen the parameters of the novel prescribed performance functions. Nonlinear transformed error surfaces are designed to counteract the effects of dead zone input nonlinearities in nonlinear high-order systems with unknown system nonlinearities and unmodeled dynamics. Based on the Lyapunov theorem, the tracking errors are proven to converge into a preassigned set in a finite time previously specified by the novel prescribed performance function. Finally, simulation results demonstrate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Shaanxi Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3