Abstract
In this paper, the results of the microfabrication, characterization, and cold-test study of the previously proposed truncated sine-waveguide interaction structure with wideband-matched output couplers for the millimeter-band backward-wave oscillator (BWO) driven by a high-current-density sheet electron beam are presented. Computer-numerical-control (CNC) micromilling was used to fabricate the designed interaction structure. The first sample was microfabricated from an aluminum alloy to test the milling process. The final sample was made from oxygen-free copper. Scanning electron microscopy (SEM) and optical microscopy were used to investigate the morphology of the microfabricated samples, and stylus profilometry was used to estimate the level of the surface roughness. Cold S-parameters were measured in Q- and V-bands (40–70 GHz), using a vector network analyzer (VNA). Using the experimentally measured phase data of the transmitted signal, the dispersion of the fabricated interaction structure was evaluated. The experimentally measured dispersion characteristic is in good agreement with the numerically calculated.
Funder
Russian Science Foundation
Department of Science and Technology
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献