A Knowledge Base Technique for Detecting Multiple High-Speed Serial Interface Synchronization Errors in Multiprocessor-Based Real-Time Embedded Systems

Author:

Masood SabeenORCID,Khan Shoab Ahmed,Hassan Ali,Khalique Fatima

Abstract

The heterogeneity of the multiple processing elements (PEs) is a feature of real-time embedded systems. General-purpose processors and several embedded processors, as well as dedicated high-speed interfaces, are among these elements. Communication between the processors is among the most significant characteristics of developing such complex systems. Furthermore, synchronization is a common issue during interprocessor communication in embedded systems. Debugging and testing such systems is time-consuming, difficult, and laborious, with the majority of the complexities centered on debugging real-time interprocessor communication, such as synchronization in terms of timing and accuracy. While the hardware design features of heterogeneous multiprocessor real-time embedded systems have received a lot of attention, the design and development of software-based solutions still have the potential to be addressed. In particular, software-based testing becomes challenging due to interprocessor communication and the synchronization of real-time applications. A knowledge-based technique that aids in testing high-speed serial interfaces in multiprocessor-based real-time embedded systems is proposed that needs debugging in real time while an application is running. It is becoming much more important to test and validate these interfaces in real time as the demand for high data transmission rates increases. The presented work uses a technique to simulate, create and enhance the knowledge base used as correlation-based error detection that reduces the development time. The proposed technique helps in detecting synchronization-related errors that occur during communication among multiple high-speed serial interfaces. The presented work also lists a series of experiments to validate the effectiveness of the proposed technique. The results show that the presented techniques are effective for error identification in real-time embedded systems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3