Computational Simulation of Microflaw Detection in Carbon-Fiber-Reinforced Polymers

Author:

Santos MárioORCID,Santos Jaime,Petrella LorenaORCID

Abstract

The evaluation of microflaws in carbon-fiber-reinforced composite laminate (CFRP) via ultrasound requires the knowledge of some important factors in addition to its structural composition. Since the laminates are heterogeneous, the high-frequency requirements to acquire high-resolution signals have limitations due to the great scattering that prevents good signal-to-noise ratios. Additionally, the ultrasonic probe’s spatial and lateral resolution characteristics are important parameters for determining the detectability level of microflaws. Modelling appears as a good approach to evaluating the abovementioned factors and the probability of detection of defects in the micron range because it makes it possible to reduce the time and cost associated with developments based on experimental tests. Concerning the subject of this work, simulation is the best way to evaluate the detectability level of the proposed defects since experimental samples are not available. In this work, the simulation was implemented using the Matlab k-Wave toolbox. A 2D matrix for mimicking a CFRP was constructed with 1 μm of resolution. Four different defect types in the micron range were created in the matrix. The simulated and experimental results presented good agreement. It was concluded that the highest frequency probe that could be used to detect the simulated defects without ambiguity was 25 MHz.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3