Skeleton Action Recognition Based on Temporal Gated Unit and Adaptive Graph Convolution

Author:

Zhu QilinORCID,Deng Hongmin,Wang Kaixuan

Abstract

In recent years, great progress has been made in the recognition of skeletal behaviors based on graph convolutional networks (GCNs). In most existing methods, however, the fixed adjacency matrix and fixed graph structure are used for skeleton data feature extraction in the spatial dimension, which usually leads to weak spatial modeling ability, unsatisfactory generalization performance, and an excessive number of model parameters. Most of these methods follow the ST-GCN approach in the temporal dimension, which inevitably leads to a number of non-key frames, increasing the cost of feature extraction and causing the model to be slower in terms of feature extraction and the required computational burden. In this paper, a gated temporally and spatially adaptive graph convolutional network is proposed. On the one hand, a learnable parameter matrix which can adaptively learn the key information of the skeleton data in spatial dimension is added to the graph convolution layer, improving the feature extraction and generalizability of the model and reducing the number of parameters. On the other hand, a gated unit is added to the temporal feature extraction module to alleviate interference from non-critical frames and reduce computational complexity. A channel attention mechanism based on an SE module and a frame attention mechanism are used to enhance the model’s feature extraction ability. To prevent model degradation and ensure more stable training, residual links are added to each feature extraction module. The proposed approach was ultimately able to achieve 0.63% higher accuracy on the X-Sub benchmark with 4.46 M fewer parameters than GAT, one of the best SOTA methods. Inference speed of our model reaches as fast as 86.23 sequences/(second × GPU). Extensive experimental results further validate the effectiveness of our proposed approach on three large-scale datasets, namely, NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton.

Funder

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference42 articles.

1. A Survey on Visual Surveillance of Object Motion and Behaviors

2. Human activity analysis

3. Actional-structural graph convolutional networks for skeleton-based action recognition;Li;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2019

4. Interpretable 3d human action analysis with temporal convolutional networks;Kim;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),2017

5. Multiview-Based 3-D Action Recognition Using Deep Networks

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3