A Model-Based Approach to Optimizing Partition Scheduling of Integrated Modular Avionics Systems

Author:

Han Pujie,Zhai Zhengjun,Zhang Lei

Abstract

The architecture of Integrated Modular Avionics (IMA) provides airborne software with a robust temporal partitioning mechanism, which achieves the reliable fault containment between avionics applications. However, the partition scheduling of an IMA system is a complex nonlinear non-convex optimization problem, making it difficult to solve the optimal temporal allocation for partitions using traditional analytical methods. This paper presents a model-based approach to optimizing the partition scheduling of IMA systems, whose temporal behavior is modeled as a network of timed automata. Given a system model, the optimizer employs a parallel genetic algorithm to search for the optimal partition resource parameters with respect to minimum processor occupancy. For each promising parameter combination, the schedulability constraints and processor occupancy of the system are precisely evaluated by Classical and Statistical Model Checking (i.e., CMC and SMC), respectively. We also apply SMC hypothesis testing to the fast falsification of non-schedulable solutions, thereby speeding up the schedulability verification based on CMC. Two case studies demonstrate that our proposed approach outperforms classical analytical methods on the processor occupancy of typical IMA systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. New Challenges for Future Avionic Architectures;Bieber;Aerospace Lab J.,2012

2. Avionics Application Software Standard Interface: Part 1—Required Services,2019

3. Compositional Verification for Hierarchical Scheduling of Real-Time Systems

4. A methodology for designing hierarchical scheduling systems;Lipari;J. Embed. Comput.,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3