AntsOMG: A Framework Aiming to Automate Creativity and Intelligent Behavior with a Showcase on Cantus Firmus Composition and Style Development

Author:

Chang Chun-YienORCID,Chen Ying-PingORCID

Abstract

Creative behavior is one of the most fascinating areas in intelligence. The development of specific styles is the most characteristic feature of creative behavior. All important creators, such as Picasso and Beethoven, have their own distinctive styles that even non-professional art lovers can easily recognize. Hence, in the present work, attempting to achieve cantus firmus composition and style development as well as inspired by the behavior of natural ants and the mechanism of ant colony optimization (ACO), this paper firstly proposes a meta-framework, called ants on multiple graphs (AntsOMG), mainly for roughly modeling creation activities and then presents an implementation derived from AntsOMG for composing cantus firmi, one of the essential genres in music. Although the mechanism in ACO is adopted for simulating ant behavior, AntsOMG is not designed as an optimization framework. Implementations can be built upon AntsOMG in order to automate creation behavior and realize autonomous development on different subjects in various disciplines. In particular, an implementation for composing cantus firmi is shown in this paper as a demonstration. Ants walk on multiple graphs to form certain trails that are composed of the interaction among the graph topology, the cost on edges, and the concentration of pheromone. The resultant graphs with the distribution of pheromone can be interpreted as a representation of cantus firmus style developed autonomously. Our obtained results indicate that the proposal has an intriguing effect, because significantly different styles may be autonomously developed from an identical initial configuration in separate runs, and cantus firmi of a certain style can be created in batch simply by using the corresponding outcome. The contribution of this paper is twofold. First, the presented implementation is immediately applicable to the creation of cantus firmi and possibly other music genres with slight modifications. Second, AntsOMG, as a meta-framework, may be employed for other kinds of autonomous development with appropriate implementations.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3