Abstract
An iterative optimization for decoupling capacitor placement on a power delivery network (PDN) is presented based on Genetic Algorithm (GA) and Artificial Neural Network (ANN). The ANN is first trained by an appropriate set of results obtained by a commercial simulator. Once the ANN is ready, it is used within an iterative GA process to place a minimum number of decoupling capacitors for minimizing the differences between the input impedance at one or more location, and the required target impedance. The combined GA–ANN process is shown to effectively provide results consistent with those obtained by a longer optimization based on commercial simulators. With the new approach the accuracy of the results remains at the same level, but the computational time is reduced by at least 30 times. Two test cases have been considered for validating the proposed approach, with the second one also being compared by experimental measurements.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献