Effective PCB Decoupling Optimization by Combining an Iterative Genetic Algorithm and Machine Learning

Author:

Cecchetti Riccardo,de Paulis FrancescoORCID,Olivieri CarloORCID,Orlandi AntonioORCID,Buecker Markus

Abstract

An iterative optimization for decoupling capacitor placement on a power delivery network (PDN) is presented based on Genetic Algorithm (GA) and Artificial Neural Network (ANN). The ANN is first trained by an appropriate set of results obtained by a commercial simulator. Once the ANN is ready, it is used within an iterative GA process to place a minimum number of decoupling capacitors for minimizing the differences between the input impedance at one or more location, and the required target impedance. The combined GA–ANN process is shown to effectively provide results consistent with those obtained by a longer optimization based on commercial simulators. With the new approach the accuracy of the results remains at the same level, but the computational time is reduced by at least 30 times. Two test cases have been considered for validating the proposed approach, with the second one also being compared by experimental measurements.

Funder

Google

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of decoupling capacitor aging and temperature for the long-term reliability of power delivery networks;Journal of Power Electronics;2024-09-10

2. Analysis and Design of the Interposer PDN With Optimal Arrangement of Decoupling Capacitors;IEEE Transactions on Components, Packaging and Manufacturing Technology;2024-02

3. Generating AI modules for decoupling capacitor placement using simulation;Advances in Radio Science;2023-12-01

4. Decoupling Optimization for Complex PDN Structures Using Deep Reinforcement Learning;IEEE Transactions on Microwave Theory and Techniques;2023-09

5. A Physics-Based Genetic Algorithm for Decap Optimization in Power Distribution Networks;2023 IEEE Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMC+SIPI);2023-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3