Terahertz Displacement Sensing Based on Interface States of Hetero-Structures

Author:

Xu Lan-Lan,Fan Ya-XianORCID,Liu Huan,Zhang Tao,Tao Zhi-YongORCID

Abstract

Herein, we propose a nano displacement sensor based on the interface state of a terahertz hetero-structure waveguide. The waveguide consists of two periodically corrugated metallic tubes with different duty ratios, which can result in similar forbidden bands in their frequency spectra. It was found that the topological properties of these forbidden bands are different, and the hetero-structure can be formed by connecting these two waveguides. In the hetero-structure waveguide, the interface state of an extraordinary transmission can always arise within the former forbidden bands, the peak frequency of which is highly dependent on the cavity length at the interface of the two periodic waveguides. So, by carefully designing the structure’s topological property, the hetero-structure waveguide can be efficiently used to produce a displacement sensor in the THz frequency range. The simulations show that the resolution of the displacement can be as small as 90 nm and the sensitivity can reach over 1.2 GHz/μm. Such a sensitive interface state of the proposed hetero-structure waveguide will greatly benefit THz applications of functional devices, including not only displacement sensors but also switches with high extinction ratios, tunable narrow-band filters, and frequency division multiplexers.

Funder

Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing

Natural Science Foundation of Heilongjiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3