Abstract
In general, a convolutional neural network (CNN) consists of one or more convolutional layers, pooling layers, and fully connected layers. Most designers adopt a trial-and-error method to select CNN parameters. In this study, an AlexNet network with optimized parameters is proposed for face image recognition. A Taguchi method is used for selecting preliminary factors and experiments are performed through orthogonal table design. The proposed method filters out factors that are significantly affected. Finally, experimental results show that the proposed Taguchi-based AlexNet network obtains 87.056% and 98.72% average accuracy of image gender recognition in the CIA and MORPH databases, respectively. In addition, the average accuracy of the proposed Taguchi-based AlexNet network is 1.576% and 3.47% higher than that of the original AlexNet network in CIA and MORPH databases, respectively.
Funder
the Ministry of Science and Technology of the Republic of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献