Detection of Malicious Primary User Emulation Based on a Support Vector Machine for a Mobile Cognitive Radio Network Using Software-Defined Radio

Author:

Cadena Muñoz ErnestoORCID,Pedraza Martínez Luis Fernando,Ortiz Triviño Jorge Eduardo

Abstract

Mobile cognitive radio networks provide a new platform to implement and adapt wireless cellular communications, increasing the use of the electromagnetic spectrum by using it when the primary user is not using it and providing cellular service to secondary users. In these networks, there exist vulnerabilities that can be exploited, such as the malicious primary user emulation (PUE), which tries to imitate the primary user signal to make the cognitive network release the used channel, causing a denial of service to secondary users. We propose a support vector machine (SVM) technique, which classifies if the received signal is a primary user or a malicious primary user emulation signal by using the signal-to-noise ratio (SNR) and Rényi entropy of the energy signal as an input to the SVM. This model improves the detection of the malicious attacker presence in low SNR without the need for a threshold calculation, which can lead to false detection results, especially in orthogonal frequency division multiplexing (OFDM) where the threshold is more difficult to estimate because the signal limit values are very close in low SNR. It is implemented on a software-defined radio (SDR) testbed to emulate the environment of mobile system modulations, such as Gaussian minimum shift keying (GMSK) and OFDM. The SVM made a previous learning process to allow the SVM system to recognize the signal behavior of a primary user in modulations such as GMSK and OFDM and the SNR value, and then the received test signal is analyzed in real-time to decide if a malicious PUE is present. The results show that our solution increases the detection probability compared to traditional techniques such as energy or cyclostationary detection in low SNR values, and it detects malicious PUE signal in MCRN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Intelligent wireless communications enabled by cognitive radio and machine learning;Zhou;China Commun.,2018

2. Online Learning With Randomized Feedback Graphs for Optimal PUE Attacks in Cognitive Radio Networks

3. Detection of dynamic location primary user emulation on mobile cognitive radio networks using USRP;Muñoz;EURASIP J. Wirel. Commun. Netw.,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3