Facial Expression Recognition of Nonlinear Facial Variations Using Deep Locality De-Expression Residue Learning in the Wild

Author:

Ullah AsadORCID,Wang JingORCID,Anwar M. Shahid,Ahmad Usman,Saeed Uzair,Fei Zesong

Abstract

Automatic facial expression recognition is an emerging field. Moreover, the interest has been increased with the transition from laboratory-controlled conditions to in the wild scenarios. Most of the research has been done over nonoccluded faces under the constrained environment, while automatic facial expression is less understood/implemented for partial occlusion in the real world conditions. Apart from that, our research aims to tackle the issues of overfitting (caused by the shortage of adequate training data) and to alleviate the expression-unrelated/intraclass/nonlinear facial variations, such as head pose estimation, eye gaze estimation, intensity and microexpressions. In our research, we control the magnitude of each Action Unit (AU) and combine several of the Action Unit combinations to leverage learning from the generative and discriminative representations for automatic FER. We have also addressed the problem of diversification of expressions from lab controlled to real-world scenarios from our cross-database study and proposed a model for enhancement of the discriminative power of deep features while increasing the interclass scatters, by preserving the locality closeness. Furthermore, facial expression consists of an expressive component as well as neutral component, so we proposed a generative model which is capable of generating neutral expression from an input image using cGAN. The expressive component is filtered and passed to the intermediate layers and the process is called De-expression Residue Learning. The residue in the intermediate/middle layers is very important for learning through expressive components. Finally, we validate the effectiveness of our method (DLP-DeRL) through qualitative and quantitative experimental results using four databases. Our method is more accurate and robust, and outperforms all the existing methods (hand crafted features and deep learning) while dealing the images in the wild.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference52 articles.

1. Facial Expression Analysis under Partial Occlusion

2. Facial Action Coding System (FACS): An instrument for the objective evaluation of facial expression and its potential applications to the study of schizophrenia;Polli;Riv. Psichiatr.,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3