Abstract
Currently, high-level synthesis (HLS) methods and tools are a highly relevant area in the strategy of several leading companies in the field of system-on-chips (SoCs) and field programmable gate arrays (FPGAs). HLS facilitates the work of system developers, who benefit from integrated and automated design workflows, considerably reducing the design time. Although many advances have been made in this research field, there are still some uncertainties about the quality and performance of the designs generated with the use of HLS methodologies. In this paper, we propose an optimization of the HLS methodology by code refactoring using Xilinx SDSoCTM (Software-Defined System-On-Chip). Several options were analyzed for each alternative through code refactoring of a multiclass support vector machine (SVM) classifier written in C, using two different Zynq®-7000 SoC devices from Xilinx, the ZC7020 (ZedBoard) and the ZC7045 (ZC706). The classifier was evaluated using a brain cancer database of hyperspectral images. The proposed methodology not only reduces the required resources using less than 20% of the FPGA, but also reduces the power consumption −23% compared to the full implementation. The speedup obtained of 2.86× (ZC7045) is the highest found in the literature for SVM hardware implementations.
Funder
Seventh Framework Programme
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献