Emitter Signal Waveform Classification Based on Autocorrelation and Time-Frequency Analysis

Author:

Ma ZhiyuanORCID,Huang Zhi,Lin Anni,Huang Guangming

Abstract

Emitter signal waveform recognition and classification are necessary survival techniques in electronic warfare systems. The emitters use various techniques for power management and complex intra-pulse modulations, which can create what looks like a noisy signal to an intercept receiver, so emitter signal waveform recognition at a low signal-to-noise ratio (SNR) has gained increased attention. In this study, we propose an autocorrelation feature image construction technique (ACFICT) combined with a convolutional neural network (CNN) to maintain the unique feature of each signal, and a structure optimization for CNN input layer called hybrid model is designed to achieve image enhancement of the signal autocorrelation, which is different from using a single image combined with CNN to complete classification. We demonstrate the performance of ACFICT by comparing feature images generated by different signal pre-processing algorithms, and the evaluation indicators are signal recognition rate, image stability degree, and image restoration degree. This paper simulates six types of the signals by combining ACFICT with three types of hybrid model, the simulation results compared with the literature show that the proposed methods not only has a high universality, but also better adapts to waveform recognition at low SNR environment. When the SNR is –6 dB, the overall recognition rate of the method reaches 88%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. Introduction to EW Systems;De Martino,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3