Performance Profiling of Embedded ConvNets under Thermal-Aware DVFS

Author:

Peluso ValentinoORCID,Rizzo Roberto Giorgio,Calimera AndreaORCID

Abstract

Convolutional Neural Networks (ConvNets) can be shrunk to fit embedded CPUs adopted on mobile end-nodes, like smartphones or drones. The deployment onto such devices encompasses several algorithmic level optimizations, e.g., topology restructuring, pruning, and quantization, that reduce the complexity of the network, ensuring less resource usage and hence higher speed. Several studies revealed remarkable performance, paving the way towards real-time inference on low power cores. However, continuous execution at maximum speed is quite unrealistic due to a fast increase of the on-chip temperature. Indeed, proper thermal management is paramount to guarantee silicon reliability and a safe user experience. Power management schemes, like voltage lowering and frequency scaling, are common knobs to control the thermal stability. Obviously, this implies a performance degradation, often not considered during the training and optimization stages. The objective of this work is to present the performance assessment of embedded ConvNets under thermal management. Our study covers the behavior of two control policies, namely reactive and proactive, implemented through the Dynamic Voltage-Frequency Scaling (DVFS) mechanism available on commercial embedded CPUs. As benchmarks, we used four state-of-the-art ConvNets for computer vision flashed into the ARM Cortex-A15 CPU. With the collected results, we aim to show the existing temperature-performance trade-off and give a more realistic analysis of the maximum performance achievable. Moreover, we empirically demonstrate the strict relationship between the on-chip thermal behavior and the hyper-parameters of the ConvNet, revealing optimization margins for a thermal-aware design of neural network layers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MOC: Multi-Objective Mobile CPU-GPU Co-Optimization for Power-Efficient DNN Inference;2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD);2023-10-28

2. Automating CPU Dynamic Thermal Control for High Performance Computing;2022 22nd IEEE International Symposium on Cluster, Cloud and Internet Computing (CCGrid);2022-05

3. On the Efficiency of AdapTTA: An Adaptive Test-Time Augmentation Strategy for Reliable Embedded ConvNets;VLSI-SoC: Technology Advancement on SoC Design;2022

4. AdapTTA: Adaptive Test-Time Augmentation for Reliable Embedded ConvNets;2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration (VLSI-SoC);2021-10-04

5. TVFS: Topology Voltage Frequency Scaling for Reliable Embedded ConvNets;IEEE Transactions on Circuits and Systems II: Express Briefs;2021-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3