Review of the Comprehensive SAR Approach to Identify Scattering Mechanisms of Radar Backscatter from Vegetated Terrain

Author:

Arii Motofumi,Yamada Hiroyoshi,Kojima Shoichiro,Ohki Masato

Abstract

In a field of polarimetric synthetic aperture radar (SAR) remote sensing, various kinds of polarimetric decomposition techniques have been proposed. However, poor validations prevent them from operational applications. A true composition ratio of scattering mechanisms within a radar backscatter plays a key role. To overcome the issue, a novel comprehensive SAR approach to accurately identify a contribution of each scattering mechanism has been introduced. This is based on multiparametric SAR observation combined with a numerical model simulation. In this article, a comprehensive SAR approach is concisely reviewed to accelerate the research in this field. First, popular model-based polarimetric decompositions are introduced and their limitations are shown. Then, a behavior of scattering mechanisms is analyzed by the discrete scatterer model with some results using real multiparametric SAR data. A comprehensive SAR approach must be essential to realize an operational use of polarimetric SAR data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ecoregion-wise fractional mapping of tree functional composition in temperate mixed forests with sentinel data: Integrating time-series spectral and radar data;Remote Sensing of Environment;2024-04

2. Impact of SAR-based vegetation attributes on the SMAP high-resolution soil moisture product;Remote Sensing of Environment;2023-12

3. Potential of optical and radar satellite observations to estimate rice biophysical variables and rice yield estimation;Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV;2023-10-17

4. Oil palm plantation age modeling using the H-alpha decomposition method of Sentinel 1-A;THE 3RD FACULTY OF INDUSTRIAL TECHNOLOGY INTERNATIONAL CONGRESS 2021 INTERNATIONAL CONFERENCE: Enriching Engineering Science through Collaboration of Multidisciplinary Fields;2023

5. Sensitivity Study of X-Band Multiparametric SAR Data From Cabbage Fields;IEEE Transactions on Geoscience and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3