A Radio over Fiber System with Simultaneous Wireless Multi-Mode Operation Based on a Multi-Wavelength Optical Comb and Pulse-Shaped 4QAM-OFDM

Author:

Li ,Lin ,Huang ,Li

Abstract

In this paper, we propose a radio over fiber transmission system with simultaneous wireless multi-mode operation based on multi-wavelength optical comb and pulse shaping. This study is an initial attempt to accomplish simultaneous wireless multi-mode operation on a single optical carrier. A multi-wavelength optical comb with 13 flat optical wavelengths and space of 10 GHz is achieved by utilizing radio frequency (RF)-optics modulation and parameter configuration. The central station contains four adjacent optical wavelengths separated from the multi-wavelength optical comb by a wavelength division multiplexer, that one is modulated by 4QAM-OFDM signals with an up-converted carrier frequency of 5 GHz. The signals modulated with a single-sideband can be obtained by employing pulse shaping. The single-sideband optical signals are combined with the other three optical wavelengths and then transmitted over a standard single-mode fiber with a length of 50 km. In this arrangement, we can obtain several wireless carriers with frequencies of 5 GHz, 25 GHz, 45 GHz, and 65 GHz by direct detection. These wireless carriers are used for wireless transmission between the RF remote units and the mobile terminals. Additionally, in the radio frequency (RF) remote unit, we have three pure optical sources that can be utilized for the uplink transmission. With single channel and direct optoelectronic modulation, the optical and wireless communication with 10 Gbps can be accomplished in the whole process of system network transmission.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence;Optical and Quantum Electronics;2024-04-08

2. 5G passive optical network employing all optical-OFDM_Hybrid SSMF/FSO;Optical and Quantum Electronics;2024-04-08

3. Transformer-based High-fidelity Modeling Method for Radio over Fiber Link;Journal of Lightwave Technology;2023

4. Ultra-wideband wireless channel and environment characterization assisted by dual optical frequency comb;Journal of Lightwave Technology;2023

5. Radio over Fiber (RoF) Techniques: A Survey;2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3