Face Recognition via Deep Learning Using Data Augmentation Based on Orthogonal Experiments

Author:

Pei Zhao,Xu Hang,Zhang Yanning,Guo Min,Yang Yee-Hong

Abstract

Class attendance is an important means in the management of university students. Using face recognition is one of the most effective techniques for taking daily class attendance. Recently, many face recognition algorithms via deep learning have achieved promising results with large-scale labeled samples. However, due to the difficulties of collecting samples, face recognition using convolutional neural networks (CNNs) for daily attendance taking remains a challenging problem. Data augmentation can enlarge the samples and has been applied to the small sample learning. In this paper, we address this problem using data augmentation through geometric transformation, image brightness changes, and the application of different filter operations. In addition, we determine the best data augmentation method based on orthogonal experiments. Finally, the performance of our attendance method is demonstrated in a real class. Compared with PCA and LBPH methods with data augmentation and VGG-16 network, the accuracy of our proposed method can achieve 86.3%. Additionally, after a period of collecting more data, the accuracy improves to 98.1%.

Funder

National Natural Science Foundation of China

the Natural Science Basic Research Plan in Shaanxi Province of China

China Postdoctoral Science Foundation

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic Literature Review: Biometric Technology Applied to Educational Institutions;TEM Journal;2024-02-27

2. Biometric Authentication using lightweight Convolutional Neural Network;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

3. Facial Emotion Recognition Using Deep Learning;Communications in Computer and Information Science;2024

4. Efficient human face recognition in real-life applications using the discrete wavelet transformation (HFRDWT);Multimedia Tools and Applications;2023-12-28

5. A Novel Method for Attendance Marking System Using Hybrid LSTM and RNN Based Networks;2023 7th International Conference on Electronics, Communication and Aerospace Technology (ICECA);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3