Reinforcement Learning-Based Resource Allocation and Energy Efficiency Optimization for a Space–Air–Ground-Integrated Network

Author:

Chen Zhiyu1,Zhou Hongxi1,Du Siyuan2,Liu Jiayan2,Zhang Luyang2,Liu Qi3

Affiliation:

1. State Grid Information & Telecommunication Branch, Beijing 100761, China

2. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

3. Beijing Fibrlink Communications Co., Ltd., Beijing 100071, China

Abstract

With the construction and development of the smart grid, the power business puts higher requirements on the communication capability of the network. In order to improve the energy efficiency of the space–air–ground-integrated power three-dimensional fusion communication network, we establish an optimization problem for joint air platform (AP) flight path selection, ground power facility (GPF) association, and power control. In solving the problem, we decompose the problem into two subproblems, one is the AP flight path selection subproblem and the other is the GPF association and power control subproblem. Firstly, based on the GPF distribution and throughput weights, we model the AP flight path selection subproblem as a Markov Decision Process (MDP) and propose a multi-agent iterative optimization algorithm based on the comprehensive judgment of GPF positions and workload. Secondly, we model the GPF association and power control subproblem as a multi-agent, time-varying K-armed bandit model and propose an algorithm based on multi-agent Temporal Difference (TD) learning. Then, by alternately iterating between the two subproblems, we propose a reinforcement learning (RL)-based joint optimization algorithm. Finally, the simulation results indicate that compared to the three baseline algorithms (random path, average transmit power, and random device association), the proposed algorithm improves an overall energy efficiency of the system of 16.23%, 86.29%, and 5.11% under various conditions (including different noise power levels, GPF bandwidth, and GPF quantities), respectively.

Funder

Science and Technology Foundation of the State Grid Corporation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3