An Improvement of Adam Based on a Cyclic Exponential Decay Learning Rate and Gradient Norm Constraints

Author:

Shao Yichuan1,Yang Jiapeng2ORCID,Zhou Wen2,Sun Haijing1,Xing Lei3,Zhao Qian4,Zhang Le1

Affiliation:

1. School of Intelligent Science & Engineering, Shenyang University, Shenyang 110044, China

2. School of Information Engineering, Shenyang University, Shenyang 110044, China

3. School of Chemistry and Chemical Engineering, University of Surrey, Guildford GU2 7XH, UK

4. School of Science, Shenyang University of Technology, Shenyang 110044, China

Abstract

Aiming at a series of limitations of the Adam algorithm, such as hyperparameter sensitivity and unstable convergence, in this paper, an improved optimization algorithm, the Cycle-Norm-Adam (CN-Adam) algorithm, is proposed. The algorithm integrates the ideas of a cyclic exponential decay learning rate (CEDLR) and gradient paradigm constraintsand accelerates the convergence speed of the Adam model and improves its generalization performance by dynamically adjusting the learning rate. In order to verify the effectiveness of the CN-Adam algorithm, we conducted extensive experimental studies. The CN-Adam algorithm achieved significant performance improvementsin both standard datasets. The experimental results show that the CN-Adam algorithm achieved 98.54% accuracy in the MNIST dataset and 72.10% in the CIFAR10 dataset. Due to the complexity and specificity of medical images, the algorithm was tested in a medical dataset and achieved an accuracy of 78.80%, which was better than the other algorithms. The experimental results show that the CN-Adam optimization algorithm provides an effective optimization strategy for improving model performance and promoting medical research.

Publisher

MDPI AG

Reference24 articles.

1. Jiang, Y., Liu, J., Xu, D., and Mandic, D.P. (2023). UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic Optimization. arXiv.

2. Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2021). On the Variance of the Adaptive Learning Rate and Beyond. arXiv.

3. Yuan, W., and Gao, K.-X. (2020). EAdam Optimizer: HowεImpact Adam. arXiv.

4. Liu, M., Zhang, W., Orabona, F., and Yang, T. (2020). Adam+: A Stochastic Method with Adaptive Variance Reduction. arXiv.

5. Loshchilov, I., and Hutter, F. (2017). Decoupled Weight Decay Regularization. arXiv.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3