1. Jiang, Y., Liu, J., Xu, D., and Mandic, D.P. (2023). UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic Optimization. arXiv.
2. Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2021). On the Variance of the Adaptive Learning Rate and Beyond. arXiv.
3. Yuan, W., and Gao, K.-X. (2020). EAdam Optimizer: HowεImpact Adam. arXiv.
4. Liu, M., Zhang, W., Orabona, F., and Yang, T. (2020). Adam+: A Stochastic Method with Adaptive Variance Reduction. arXiv.
5. Loshchilov, I., and Hutter, F. (2017). Decoupled Weight Decay Regularization. arXiv.