Polymorphic Clustering and Approximate Masking Framework for Fine-Grained Insect Image Classification

Author:

Huo Hua1ORCID,Mei Aokun1,Xu Ningya1

Affiliation:

1. Information Engineering College, Henan University of Science and Technology, Luoyang 471000, China

Abstract

Insect diversity monitoring is crucial for biological pest control in agriculture and forestry. Modern monitoring of insect species relies heavily on fine-grained image classification models. Fine-grained image classification faces challenges such as small inter-class differences and large intra-class variances, which are even more pronounced in insect scenes where insect species often exhibit significant morphological differences across multiple life stages. To address these challenges, we introduce segmentation and clustering operations into the image classification task and design a novel network model training framework for fine-grained classification of insect images using multi-modality clustering and approximate mask methods, named PCAM-Frame. In the first stage of the framework, we adopt the Polymorphic Clustering Module, and segmentation and clustering operations are employed to distinguish various morphologies of insects at different life stages, allowing the model to differentiate between samples at different life stages during training. The second stage consists of a feature extraction network, called Basenet, which can be any mainstream network that performs well in fine-grained image classification tasks, aiming to provide pre-classification confidence for the next stage. In the third stage, we apply the Approximate Masking Module to mask the common attention regions of the most likely classes and continuously adjust the convergence direction of the model during training using a Deviation Loss function. We apply PCAM-Frame with multiple classification networks as the Basenet in the second stage and conduct extensive experiments on the Insecta dataset of iNaturalist 2017 and IP102 dataset, achieving improvements of 2.2% and 1.4%, respectively. Generalization experiments on other fine-grained image classification datasets such as CUB200-2011 and Stanford Dogs also demonstrate positive effects. These experiments validate the pertinence and effectiveness of our framework PCAM-Frame in fine-grained image classification tasks under complex conditions, particularly in insect scenes.

Funder

National Natural Science Foundation of China

Major Science and Technology Program of Henan Province

Central Government Guiding Local Science and Technology Development Fund Program of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3