Monotonic Asynchronous Two-Bit Full Adder

Author:

Balasubramanian Padmanabhan1ORCID,Maskell Douglas L.1ORCID

Affiliation:

1. College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

Monotonic circuits are a class of input–output mode (IOM) asynchronous circuits that are relaxed compared to quasi-delay-insensitive (QDI) IOM asynchronous circuits in terms of signaling the completion of internal processing. Some recent works have demonstrated the superiority of monotonic logic over QDI logic for arithmetic circuits such as adders and multipliers. This paper presents a new monotonic asynchronous two-bit full adder (TFA) that can be duplicated and cascaded to form a ripple-carry adder (RCA). While an RCA is a slow adder with respect to synchronous design, with respect to IOM asynchronous design an RCA is a noteworthy adder since it has perhaps the least reverse latency that is not attainable through other IOM asynchronous adders. Conventionally, an RCA is constructed via a cascade of one-bit full adders (OFAs). An OFA adds two input bits along with any carry input and produces a sum bit and any carry output. On the other hand, a TFA simultaneously adds two pairs of input bits along with any carry input and produces two sum bits and any carry output. Using our proposed monotonic TFA, we realized an RCA to compare its performance with RCAs constructed using different asynchronous OFAs, and RCAs constructed using existing TFAs. We considered the popular delay-insensitive dual-rail scheme for encoding the adder inputs and outputs, and two 4-phase handshake protocols, namely return-to-zero handshaking (R0H) and return-to-one handshaking (R1H) for communication separately. We used a 28 nm CMOS process for implementation and considered a 32-bit addition as an example. Based on the design metrics estimated, the following inferences were derived: (i) compared to the RCA using the state-of-the-art monotonic OFA, the RCA incorporating the proposed TFA achieved a 26% reduction in cycle time for R0H and a 28.5% reduction in cycle time for R1H while dissipating almost the same power; the cycle time governs the data application rate in an IOM asynchronous circuit, and (ii) compared to the RCA comprising an early output QDI TFA, the RCA incorporating the proposed TFA achieved a 22.3% reduction in cycle time for R0H and a 25.4% reduction in cycle time for R1H while dissipating moderately less power. Also, compared to the existing early output QDI TFA, the proposed TFA occupies 40.9% less area for R0H and 42% less area for R1H.

Funder

Singapore Ministry of Education (MOE), Academic Research Fund

Publisher

MDPI AG

Reference43 articles.

1. Zhang, H., Putic, M., and Lach, J. (2014, January 1–5). Low power GPGPU computation with imprecise hardware. Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA, USA.

2. Wanhammar, L. (1999). DSP Integrated Circuits, Academic Press.

3. Chen, D.C., Guerra, L.M., Ng, E.H., Potkonjak, M., Schultz, D.P., and Rabaey, J.M. (1992, January 4–7). An integrated system for rapid prototyping of high performance algorithm specific data paths. Proceedings of the International Conference on Application Specific Array Processors, Berkeley, CA, USA.

4. Hennessy, J.L., and Patterson, D.A. (1990). Computer Architecture: A Quantitative Approach, Morgan Kaufmann Publishers.

5. Garside, J.D. (April, January 31). A CMOS VLSI implementation of an asynchronous ALU. Proceedings of the IFIP Working Conference on Asynchronous Design Methodologies, Manchester, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3