A Section Location Method of Single-Phase Short-Circuit Faults for Distribution Networks Containing Distributed Generators Based on Fusion Fault Confidence of Short-Circuit Current Vectors

Author:

Xu Shoudong12,Ouyang Jinxin1,Chen Jiyu1,Xiong Xiaofu1

Affiliation:

1. School of Electrical Engineering, Chongqing University, Chongqing 400044, China

2. Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China

Abstract

To ensure safe and stable operation, accurate fault localization within active distribution networks is required, and this has attracted much attention. Influenced by many factors such as the control strategy, control performance, initial state of the distributed generators, and distribution network topology, it is still difficult to reliably locate complex and variable single-phase short-circuit faults relying only on a single feature quantity, while localization methods incorporating intelligent algorithms are affected by the choice of a priori samples and the fact that the solution process is a black-box model. To address this challenge, in this work, an expression for the single-phase short-circuit current vector of a distribution network containing distributed generators is derived, and the differences in magnitude and phase angle of the short-circuit current vectors upstream and downstream of the fault point are analyzed. Based on measurement theory, a fault confidence distribution function that reacts to the relative size of the current magnitude difference and phase angle difference is established, and the fusion fault confidence of the short-circuit current vector is constructed with the help of evidence theory. Finally, a method of locating single-phase short-circuit faults in distribution networks that contain distributed generators is proposed. The simulation results show that the ratio of the fusion fault confidence of the short-circuit current vector between faulted and non-faulted sections under the influence of different distributed generator capacities, fault locations, and transition resistances differ significantly. The proposed single-phase short-circuit fault localization method is both adaptive and physically interpretable and has clear boundaries, sound sensitivity, and engineering practicability.

Funder

Science and Technology Project of Yunnan Power Grid Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3