Active Visual Perception Enhancement Method Based on Deep Reinforcement Learning

Author:

Yang Zhonglin12,Fang Hao1,Liu Huanyu1,Li Junbao1,Jiang Yutong2,Zhu Mengqi2

Affiliation:

1. School of Cyberspace Security, Harbin Institute of Technology, Harbin 150000, China

2. Information and Control Technology Department, China North Vehicle Research Institute, Beijing 100072, China

Abstract

Traditional object detection methods using static cameras are constrained by their limited perspectives, hampering the effective detection of low-confidence targets. To address this challenge, this study introduces a deep reinforcement learning-based visual perception enhancement technique. This approach leverages pan–tilt–zoom (PTZ) cameras to achieve active vision, enabling them to autonomously make decisions and actions tailored to the current scene and object detection outcomes. This optimization enhances both the object detection process and information acquisition, significantly boosting the intelligent perception capabilities of PTZ cameras. Experimental findings demonstrate the robust generalization capabilities of this method across various object detection algorithms, resulting in an average confidence level improvement of 23.80%.

Funder

National Natural Science Foundation of China

Interdisciplinary Research Foundation of HIT

Publisher

MDPI AG

Reference23 articles.

1. Video Surveillance Systems-Current Status and Future Trends;Tsakanikas;Comput. Electr. Eng.,2018

2. A Small Target Detection Method Based on Deep Learning with Considerate Feature and Effectively Expanded Sample Size;Zhang;IEEE Access,2021

3. Wang, S., Tian, Y., and Xu, Y. (2015, January 19–22). Automatic Control of PTZ Camera Based on Object Detection and Scene Partition. Proceedings of the 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Ningbo, China.

4. Wang, X., Van De Weem, J., and Jonker, P. (2013, January 25–29). An Advanced Active Vision System Imitating Human Eye Movements. Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay.

5. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. (2016). OpenAI Gym 2016. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3