Refining Localized Attention Features with Multi-Scale Relationships for Enhanced Deepfake Detection in Spatial-Frequency Domain

Author:

Gao Yuan12,Zhang Yu13,Zeng Ping13,Ma Yingjie1

Affiliation:

1. Department of Electronics and Communications Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China

2. State Information Center, Beijing 100045, China

3. School of Telecommunications Engineering, Xidian University, Xi’an 710071, China

Abstract

The rapid advancement of deep learning and large-scale AI models has simplified the creation and manipulation of deepfake technologies, which generate, edit, and replace faces in images and videos. This gradual ease of use has turned the malicious application of forged faces into a significant threat, complicating the task of deepfake detection. Despite the notable success of current deepfake detection methods, which predominantly employ data-driven CNN classification models, these methods exhibit limited generalization capabilities and insufficient robustness against novel data unseen during training. To tackle these challenges, this paper introduces a novel detection framework, ReLAF-Net. This framework employs a restricted self-attention mechanism that applies self-attention to deep CNN features flexibly, facilitating the learning of local relationships and inter-regional dependencies at both fine-grained and global levels. This attention mechanism has a modular design that can be seamlessly integrated into CNN networks to improve overall detection performance. Additionally, we propose an adaptive local frequency feature extraction algorithm that decomposes RGB images into fine-grained frequency domains in a data-driven manner, effectively isolating fake indicators in the frequency space. Moreover, an attention-based channel fusion strategy is developed to amalgamate RGB and frequency information, achieving a comprehensive facial representation. Tested on the high-quality version of the FaceForensics++ dataset, our method attained a detection accuracy of 97.92%, outperforming other approaches. Cross-dataset validation on Celeb-DF, DFDC, and DFD confirms the robust generalizability, offering a new solution for detecting high-quality deepfake videos.

Funder

China Postdoctoral Science Foundation

National Social Science Fund of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3