Advancing into Millimeter Wavelengths for IoT: Multibeam Modified Planar Luneburg Lens Antenna with Porous Plastic Material

Author:

Pourahmadazar Javad1,Virdee Bal S.2ORCID,Denidni Tayeb A.1

Affiliation:

1. Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Varennes, QC J3X 1P7, Canada

2. Center for Communications Technology, London Metropolitan University, London N7 8DB, UK

Abstract

This paper introduces an innovative antenna design utilizing a cylindrical dielectric Luneburg lens tailored for 60 GHz Internet of Things (IoT) applications. To optimize V-band communications, the permittivity of the dielectric medium is strategically adjusted by precisely manipulating the physical porosity. In IoT scenarios, employing a microstrip dipole antenna with an emission pattern resembling cos10 enhances beam illumination within the waveguide, thereby improving communication and sensing capabilities. The refractive index gradient of the Luneburg lens is modified by manipulating the material’s porosity using air holes, prioritizing signal accuracy and reliability. Fabricated with polyimide using 3D printing, the proposed antenna features a slim profile ideal for IoT applications with space constraints, such as smart homes and unmanned aerial vehicles. Its innovative design is underscored by selective laser sintering (SLS), offering scalable and cost-effective production. Measured results demonstrate the antenna’s exceptional performance, surpassing IoT deployment standards. This pioneering approach to designing multibeam Luneburg lens antennas, leveraging 3D printing’s porosity control for millimeter-wave applications, represents a significant advancement in antenna technology with scanning ability between −67 and 67 degrees. It paves the way for enhanced IoT infrastructure characterized by advanced sensing capabilities and improved connectivity.

Publisher

MDPI AG

Reference50 articles.

1. What Will 5G Be?;Andrews;IEEE J. Sel. Areas Commun.,2014

2. Multibeam 3-D-Printed Luneburg Lens Fed by Magnetoelectric Dipole Antennas for Millimeter-Wave MIMO Applications;Li;IEEE Trans. Antennas Propag.,2019

3. Pourahmadazar, J. (2018). New Millimetric Lens Antennas Using Periodic Porous Plastic Structures. [Ph.D. Thesis, Université du Québec, Institut National de la Recherche Scientifique]. (In English).

4. Towards Millimeter-wavelength: Transmission-Mode Fresnel-Zone Plate Lens Antennas using Plastic Material Porosity Control in Homogeneous Medium;Pourahmadazar;Sci. Rep.,2018

5. Liang, M., Yu, X., Sabory-Garcia, R., Ng, W.-R., Gehm, M.E., and Xin, H. (2012, January 17–22). Direction of arrival estimation using Luneburg lens. Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3