Two-Stage Neural Network Optimization for Robust Solar Photovoltaic Forecasting

Author:

Oh Jinyeong1,So Dayeong2,Jo Jaehyeok3,Kang Namil3,Hwang Eenjun1ORCID,Moon Jihoon23ORCID

Affiliation:

1. School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

2. Department of ICT Convergence, Soonchunhyang University, Asan 31538, Republic of Korea

3. Department of AI and Big Data, Soonchunhyang University, Asan 31538, Republic of Korea

Abstract

Neural networks (NNs) have shown outstanding performance in solar photovoltaic (PV) power forecasting due to their ability to effectively learn unstable environmental variables and their complex interactions. However, NNs are limited in their practical industrial application in the energy sector because the optimization of the model structure or hyperparameters is a complex and time-consuming task. This paper proposes a two-stage NN optimization method for robust solar PV power forecasting. First, the solar PV power dataset is divided into training and test sets. In the training set, several NN models with different numbers of hidden layers are constructed, and Optuna is applied to select the optimal hyperparameter values for each model. Next, the optimized NN models for each layer are used to generate estimation and prediction values with fivefold cross-validation on the training and test sets, respectively. Finally, a random forest is used to learn the estimation values, and the prediction values from the test set are used as input to predict the final solar PV power. As a result of experiments in the Incheon area, the proposed method is not only easy to model but also outperforms several forecasting models. As a case in point, with the New-Incheon Sonae dataset—one of three from various Incheon locations—the proposed method achieved an average mean absolute error (MAE) of 149.53 kW and root mean squared error (RMSE) of 202.00 kW. These figures significantly outperform the benchmarks of attention mechanism-based deep learning models, with average scores of 169.87 kW for MAE and 232.55 kW for RMSE, signaling an advance that is expected to make a significant contribution to South Korea’s energy industry.

Funder

BK21 FOUR

Soonchunhyang University Research Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3