Causal Inference and Prefix Prompt Engineering Based on Text Generation Models for Financial Argument Analysis

Author:

Ding Fei1ORCID,Kang Xin1ORCID,Wang Linhuang1,Wu Yunong2,Nakagawa Satoshi3,Ren Fuji4ORCID

Affiliation:

1. Faculty of Engineering, Tokushima University, Tokushima 770-8506, Japan

2. Dataa Robotics, Chengdu 610000, China

3. Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-0033, Japan

4. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

The field of argument analysis has become a crucial component in the advancement of natural language processing, which holds the potential to reveal unprecedented insights from complex data and enable more efficient, cost-effective solutions for enhancing human initiatives. Despite its importance, current technologies face significant challenges, including (1) low interpretability, (2) lack of precision and robustness, particularly in specialized fields like finance, and (3) the inability to deploy effectively on lightweight devices. To address these challenges, we introduce a framework uniquely designed to process and analyze massive volumes of argument data efficiently and accurately. This framework employs a text-to-text Transformer generation model as its backbone, utilizing multiple prompt engineering methods to fine-tune the model. These methods include Causal Inference from ChatGPT, which addresses the interpretability problem, and Prefix Instruction Fine-tuning as well as in-domain further pre-training, which tackle the issues of low robustness and accuracy. Ultimately, the proposed framework generates conditional outputs for specific tasks using different decoders, enabling deployment on consumer-grade devices. After conducting extensive experiments, our method achieves high accuracy, robustness, and interpretability across various tasks, including the highest F1 scores in the NTCIR-17 FinArg-1 tasks.

Funder

Graduate School of Technology, Industrial and Social Sciences, Tokushima University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3