Resilient Integrated Control for AIOT Systems under DoS Attacks and Packet Loss

Author:

Cao Xiaoya12,Wang Wenting34,Chen Zhenya12,Wang Xin12ORCID,Yang Ming12

Affiliation:

1. Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250014, China

3. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China

4. State Grid Shandong Electric Power Research Institute, Jinan 250003, China

Abstract

This paper addresses bandwidth limitations resulting from Denial-of-Service (DoS) attacks on Artificial Intelligence of Things (AIOT) systems, with a specific focus on adverse network conditions. First, to mitigate the impact of DoS attacks on system bandwidth, a novel model predictive control combined with a dynamic time-varying quantization interval adjustment technique is designed for the encoder–decoder architecture of AIOT systems. Second, the network state is modeled to represent a Markov chain under suboptimal network conditions. Furthermore, to guarantee the stability of AIOT systems under random packet loss, a Kalman filter algorithm is applied to precisely estimate the system state. By leveraging the Lyapunov stability theory, the maximum tolerable probability of random packet loss is determined, thereby enhancing the system’s resilient operation. Simulation results validate the effectiveness of the proposed method in dealing with DoS attacks and adverse network conditions.

Funder

Shandong Provincial Innovation Capability Improvement Project for Small and Medium-sized Scientific and Technological Enterprises

Taishan Scholars Program

Shandong Provincial Higher Education Youth Innovation Team Development Project

“20 New Universities” Project of Jinan City

Pilot Project for Integrated Innovation of Science, Education and Industry of Qilu University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3