Piezoelectric MEMS Energy Harvester for Low-Power Applications

Author:

Muscalu George12ORCID,Firtat Bogdan1ORCID,Anghelescu Adrian1,Moldovan Carmen1,Dinulescu Silviu1,Brasoveanu Costin1,Ekwinska Magdalena3,Szmigiel Dariusz3,Zaborowski Michal3,Zajac Jerzy3,Stan Ion4,Tulbure Adrian5ORCID

Affiliation:

1. National Institute for Research and Development in Microtechnologies, 077190 Bucharest, Romania

2. Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 061071 Bucharest, Romania

3. Sieć Badawcza Łukasiewicz-Instytut Mikroelektroniki i Fotoniki, 02-668 Warszawa, Poland

4. Romelgen SRL, 021784 Bucharest, Romania

5. Department of Informatics, Mathematics and Electronics, University “1 Decembrie1918”, 510009 Alba Iulia, Romania

Abstract

With the global market value of sensors on the rise, this paper focuses on the fabrication and testing of a proof-of-concept piezoelectric energy harvester which is able to harvest mechanical energy from the ambient environment and convert it into electrical energy in order to power wireless sensor networks. We focused on obtaining a new device structure based on a comb-type array of piezoelectric MEMS cantilevers (2 × 10) for a resonant frequency in the environmental application domain (a few hundred Hz) and a chip area of only 1 cm2. The configuration of the lead-free piezoelectric cantilever consists of a Si substrate, a pair of Ti-Pt electrodes and a sputtered piezoelectric layer of 12% Sc-doped AlN with a thickness of 1000 nm, a dielectric constant of ~13 and e31,f = 1.3 C/m2. At a resonant frequency of 465.2 Hz and an acceleration of 1 g, the maximum value for the collected power was 2.53 µW for an optimal load resistance of 1 MΩ resulting in a power density of 60.2 nW/mm3 for the unpacked device, without taking into account the vibration volume. By increasing the excitation acceleration to 2 g RMS and using LTC3588-1 for the power circuitry we were able to obtain a stabilized output voltage of 1.8 V.

Publisher

MDPI AG

Reference31 articles.

1. (2024, March 26). Industrial Sensors Market Size, Share, Industry Report, Revenue Trends and Growth Drivers. Available online: https://www.marketsandmarkets.com/Market-Reports/industrial-sensor-market-108042398.html.

2. (2024, March 26). The European Green Deal—European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en.

3. (2024, March 26). Energy Harvesting System Market Size, Share, Industry Trends Forecast, Opportunities 2030. Available online: https://www.marketsandmarkets.com/Market-Reports/energy-harvesting-market-734.html.

4. Vibration Energy Harvesting by Magnetostrictive Material;Wang;Smart Mater. Struct.,2008

5. Pan, C.T., Liu, Z.H., Chen, Y.C., Chang, W.T., and Chen, Y.J. (2011, January 5–9). Study of Vibration-Induced Broadband Flexible Piezoelectric ZnO Micro-Harvester with Storage System. Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3