Automatic Modulation Recognition Method Based on Phase Transformation and Deep Residual Shrinkage Network

Author:

Chen Hao1,Guo Wenpu1,Kang Kai1,Hu Guojie1

Affiliation:

1. College of Communication Engineering, Rocket Force University of Engineering, Xi’an 710025, China

Abstract

Automatic Modulation Recognition (AMR) is currently a research hotspot, and research under low Signal-to-Noise Ratio (SNR) conditions still poses certain challenges. This paper proposes an AMR method based on phase transformation and deep residual shrinkage network to improve recognition accuracy. Firstly, the raw I/Q data from the benchmark dataset RML2016.10a are used as the input. Then, an end-to-end modulation recognition is performed using the model. Phase transformation is used to correct the raw I/Q data and reduce the interference of phase shift on modulation recognition. Convolutional neural network (CNN) and Gate Recurrent Unit (GRU) extract the spatial and temporal features of the modulation signal, respectively. The improved deep residual shrinkage network is added after CNN to eliminate unimportant features through soft thresholding. Finally, the proposed model is trained and tested. The experimental results show that the proposed model notably reduces the number of parameters compared to other models, effectively improving the recognition accuracy under low SNR conditions. The average recognition accuracy reaches 62.46%, and the highest recognition accuracy reaches 92.41%.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3