Failure Mechanism Information-Assisted Multi-Domain Adversarial Transfer Fault Diagnosis Model for Rolling Bearings under Variable Operating Conditions

Author:

Zhong Zhidan1ORCID,Zhang Zhihui1,Cui Yunhao1,Xie Xinghui2,Hao Wenlu3

Affiliation:

1. School of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471023, China

2. State Key Laboratory of Aerospace Precision Bearings, Luoyang 471000, China

3. Luoyang Xinqianglian Slewing Bearing Co., Ltd., Luoyang 471000, China

Abstract

Deep transfer learning tackles the challenge of fault diagnosis in rolling bearings across variable operating conditions, which is pivotal for intelligent bearing health management. Traditional transfer learning may not be able to adapt to the specific characteristics of the target domain, especially in the case of variable working conditions or lack of annotated data for the target domain. This may lead to unstable training results or negative transfer of the neural network. This paper proposes a new method for enhancing unsupervised domain adaptation in bearing fault diagnosis, aimed at providing robust fault diagnosis for rolling bearings under varying operating conditions. It incorporates bearing fault finite element simulation data into the domain adversarial network, guiding adversarial training using fault evolution mechanisms. The algorithm establishes global and subdomain classifiers, with simulation signals replacing label predictions for target data in the subdomain, ensuring minimal information transfer. By reconstructing the loss function, we can extract the common features of the same type bearing under different conditions and enhance the domain antagonism robustness. The proposed method is validated using two sets of testbed data as target domains. The results demonstrate that the method can adequately adapt the deep feature distributions of the model and experimental domains, thereby improving the accuracy of fault diagnosis in unsupervised cross-domain scenarios.

Funder

the Major Science and Technology Project of Henan Province

the Joint Fund of Science and Technology Research and Development Plan of Henan Province

the Key Research Projects of Higher Education Institutions of Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3