Interspectral Error Tracking and Compensation of DSDT in Satellite Internet of Things

Author:

Wang Chen1,Zheng Lin1,Wang Gang2,Liu Zhiwei3,Yang Chao1ORCID

Affiliation:

1. Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin University of Electronic Technology, Guilin 541000, China

2. School of Computing and Data Engineering, NingboTech University, Ningbo 315100, China

3. Center for Future Intelligent Systems, China Academy of Aerospace Science and Innovation, Beijing 100000, China

Abstract

With the rapid growth of satellite Internet of Things (SIoT) services, existing frequency band resources are insufficient to meet future business demands. To effectively address this issue, it is necessary to enhance the utilization of existing frequency resources. However, idle frequency resources are typically scattered across multiple bands and vary in bandwidth size. Direct Spectrum Division Transmission (DSDT), dividing a complete signal into sub-spectrum signals for transmission in idle frequency bands, can take the use of fragmented spectrum resources for satellite communication. Nevertheless, the performance of DSDT depends heavily on accurate synchronization toward multiple sub-spectrums. In this paper, an algorithm for error synchronization tracking and compensation is proposed by utilizing the focusing nature of constellation. All sub-spectrums are weighed by the minimum Euclidean distance of the constellation to compensate for amplitude–frequency–phase errors simultaneously. Simulations and experimental verification demonstrate synchronization performance and feasibility of proposed method in a multi-radio frequency channels environment.

Funder

National Key Laboratory of Wireless Communications Foundation

Ningbo Key R&D Program

Zhejiang Province Postdoctoral Research Funding Project

China Postdoctoral Science Foundation

Ningbo Natural Science Foundation

Fund of Key Laboratory of Cognitive Radio and Information Processing through the Ministry of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3