Intelligent Regulation of Temperature and Humidity in Vegetable Greenhouses Based on Single Neuron PID Algorithm

Author:

Huang Song1,Xiang Huiyu1ORCID,Leng Chongjie1,Dai Tongyang1,He Guanghui1

Affiliation:

1. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China

Abstract

In order to meet the demands of autonomy and control optimization in solar greenhouse control systems, this paper developed an intelligent temperature and humidity control system for greenhouses based on the Single Neuron Proportional Integral Derivative (SNPID) algorithm. The system is centered around the Huada HC32F460 Micro-Controller Unit (MCU) and the RT-Thread operating system, integrated with the SNPID control algorithm. Through comprehensive simulation, model construction, and comparative experiments, this system was thoroughly evaluated in comparison with traditional PID control systems (cPID) that rely on overseas software and hardwsbuare. Simulation results show that our new system significantly outperforms traditional PID (Proportional Integral Derivative) systems in terms of temperature control stability and accuracy. Experimental data further confirm that, while ensuring cost-effectiveness, the new system achieves a remarkable 50.2% improvement in temperature and humidity control precision compared to traditional systems. The temperature Root Mean Square Error (RMSE) in the experimental greenhouse is 0.734 compared to 1.594 in the comparison greenhouse, indicating better stable temperature control capability. The vents in the experimental greenhouse have a maximum opening of 67 cm and a minimum of 5 cm, showing a quick response property to high temperatures. In contrast, the control greenhouse has a maximum vent opening of 55 cm, remaining unchanged during the test period, which reflects its slower response to temperature fluctuations. These results demonstrate the significant advantages of the designed solar greenhouse temperature and humidity control system in terms of autonomy and control optimization, providing an efficient and economical solution for solar greenhouse environmental management. This system shows significant practical application perspective in promoting intelligent agriculture and sustainable agricultural production, highlighting its broad impact and potential significance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3