Hybrid State Estimation: Integrating Physics-Informed Neural Networks with Adaptive UKF for Dynamic Systems

Author:

de Curtò J.1234ORCID,de Zarzà I.245ORCID

Affiliation:

1. Department of Computer Applications in Science & Engineering, BARCELONA Supercomputing Center, 08034 Barcelona, Spain

2. Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany

3. Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, 28015 Madrid, Spain

4. Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain

5. Escuela Politécnica Superior, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain

Abstract

In this paper, we present a novel approach to state estimation in dynamic systems by combining Physics-Informed Neural Networks (PINNs) with an adaptive Unscented Kalman Filter (UKF). Recognizing the limitations of traditional state estimation methods, we refine the PINN architecture with hybrid loss functions and Monte Carlo Dropout for enhanced uncertainty estimation. The Unscented Kalman Filter is augmented with an adaptive noise covariance mechanism and incorporates model parameters into the state vector to improve adaptability. We further validate this hybrid framework by integrating the enhanced PINN with the UKF for a seamless state prediction pipeline, demonstrating significant improvements in accuracy and robustness. Our experimental results show a marked enhancement in state estimation fidelity for both position and velocity tracking, supported by uncertainty quantification via Bayesian inference and Monte Carlo Dropout. We further extend the simulation and present evaluations on a double pendulum system and state estimation on a quadcopter drone. This comprehensive solution is poised to advance the state-of-the-art in dynamic system estimation, providing unparalleled performance across control theory, machine learning, and numerical optimization domains.

Funder

Barcelona Supercomputing Center

Universidad Francisco de Vitoria

Publisher

MDPI AG

Reference20 articles.

1. De Zarzà, I., de Curtò, J., Roig, G., and Calafate, C.T. (2023). LLM Adaptive PID Control for B5G Truck Platooning Systems. Sensors, 23.

2. De Curtò, J., de Zarzà, I., and Calafate, C.T. (2023). Semantic Scene Understanding with Large Language Models on Unmanned Aerial Vehicles. Drones, 7.

3. A review on Kalman filter models;Khodarahmi;Arch. Comput. Methods Eng.,2023

4. Freirich, D., Michaeli, T., and Meir, R. (2024, January 9–15). Perceptual kalman filters: Online state estimation under a perfect perceptual-quality constraint. Proceedings of the NeurIPS 2024, the Thirty-Eighth Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada.

5. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations;Raissi;J. Comput. Phys.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3