On the Secrecy Sum-Rate of Internet of Things Networks: Scheduling and Power Control

Author:

Bang Inkyu1ORCID,Chae Seong Ho2ORCID,Jung Bang Chul3ORCID

Affiliation:

1. Department of Intelligence Media Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

2. Department of Electronics Engineering, Tech University of Korea, Siheung 15073, Republic of Korea

3. Department of Electronics Engineering, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

Physical-layer security (PLS) has attracted much attention in wireless communications and has been considered one of the main candidates for enhancing wireless security in future 6G networks. Recent studies in the PLS area have focused on investigating and analyzing the characteristics of secure transmissions in multiuser networks (e.g., the massive number of Internet of Things (IoT) devices in 6G networks). Due to the difficulty of obtaining the exact secrecy capacity region in wireless multiuser networks, several alternative methods are used to characterize the secrecy performance of multiuser networks. For example, we can analyze the secrecy sum-rate scaling in terms of the number of users based on multiuser diversity (MUD). In this paper, we propose an opportunistic user scheduling scheme that achieves optimal MUD gain, combined with a power control mechanism for reducing information leakage to multiple eavesdroppers in wireless networks. The proposed scheme considers multiuser transmissions in one scheduling time slot by adopting orthogonal random beamforming at the receiver to exploit the full degrees-of-freedom gain with an assumption that each user (or IoT device) is equipped with a single antenna, and base station and eavesdroppers have multiple antennas. The main contribution of this paper is to derive the analytic result of the achievable secrecy sum-rate scaling in a high signal-to-noise ratio (SNR) regime. We evaluate the performance of the proposed scheduling scheme with a power control mechanism through simulations with both internal and external eavesdropping scenarios. We further discuss the extensibility of our analysis to various applications such as satellite communications and IoT networks.

Funder

Korea Research Institute for defense Technology planning and advancement

Korea government (DAPA

Space-Layer Intelligent Communication Network Laboratory

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3