Robust Tensor Learning for Multi-View Spectral Clustering

Author:

Xie Deyan1,Li Zibao1,Sun Yingkun1,Song Wei2ORCID

Affiliation:

1. School of Science and Information Science, Qingdao Agricultural University, Qingdao 266109, China

2. Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China

Abstract

Tensor-based multi-view spectral clustering methods are promising in practical clustering applications. However, most of the existing methods adopt the ℓ2,1 norm to depict the sparsity of the error matrix, and they usually ignore the global structure embedded in each single view, compromising the clustering performance. Here, we design a robust tensor learning method for multi-view spectral clustering (RTL-MSC), which employs the weighted tensor nuclear norm to regularize the essential tensor for exploiting the high-order correlations underlying multiple views and adopts the nuclear norm to constrain each frontal slice of the essential tensor as the block diagonal matrix. Simultaneously, a novel column-wise sparse norm, namely, ℓ2,p, is defined in RTL-MSC to measure the error tensor, making it sparser than the one derived by the ℓ2,1 norm. We design an effective optimization algorithm to solve the proposed model. Experiments on three widely used datasets demonstrate the superiority of our method.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

Natural Science Foundation of Guangdong Province

Qingdao Agricultural University

Qingchuang Talents Induction Program of Shandong Higher Education Institution

Publisher

MDPI AG

Reference41 articles.

1. Normalized cuts and image segmentation;Shi;IEEE Trans. Pattern Anal. Mach. Intell.,2000

2. On spectral clustering: Analysis and an algorithm;Ng;Adv. Neural Inf. Process. Syst.,2001

3. A simple approach to automated spectral clustering;Fan;Adv. Neural Inf. Process. Syst.,2022

4. Efficient semidefinite spectral clustering via Lagrange duality;Yan;IEEE Trans. Image Process.,2014

5. Learning segmentation by random walks;Meila;Adv. Neural Inf. Process. Syst.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3