Efficient Inference Offloading for Mixture-of-Experts Large Language Models in Internet of Medical Things

Author:

Yuan Xiaoming12ORCID,Kong Weixuan1,Luo Zhenyu1,Xu Minrui3

Affiliation:

1. Hebei Key Laboratory of Marine Perception Network and Data Processing, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

2. State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China

3. School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

Despite recent significant advancements in large language models (LLMs) for medical services, the deployment difficulties of LLMs in e-healthcare hinder complex medical applications in the Internet of Medical Things (IoMT). People are increasingly concerned about e-healthcare risks and privacy protection. Existing LLMs face difficulties in providing accurate medical questions and answers (Q&As) and meeting the deployment resource demands in the IoMT. To address these challenges, we propose MedMixtral 8x7B, a new medical LLM based on the mixture-of-experts (MoE) architecture with an offloading strategy, enabling deployment on the IoMT, improving the privacy protection for users. Additionally, we find that the significant factors affecting latency include the method of device interconnection, the location of offloading servers, and the speed of the disk.

Funder

National Natural Science Foundation of China

Science and Technology Project of Hebei Province Education Department

Project of Hebei Key Laboratory of Software Engineering

Publisher

MDPI AG

Reference45 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017, January 4–9). Attention is all you need. Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA.

2. Edge intelligence and Internet of Things in healthcare: A survey;Amin;IEEE Access,2020

3. Xu, M., Niyato, D., Zhang, H., Kang, J., Xiong, Z., Mao, S., and Han, Z. (2024). Cached Model-as-a-Resource: Provisioning Large Language Model Agents for Edge Intelligence in Space-air-ground Integrated Networks. arXiv.

4. Xu, M., Dusit, N., Kang, J., Xiong, Z., Mao, S., Han, Z., Kim, D.I., and Letaief, K.B. (2024). When large language model agents meet 6g networks: Perception, grounding, and alignment. arXiv.

5. Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D.S., de las Casas, D., Hanna, E.B., and Bressand, F. (2024). Mixtral of experts. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3