An Improved Current Signal Extraction-Based High-Frequency Pulsating Square-Wave Voltage Injection Method for Interior Permanent-Magnet Synchronous Motor Position-Sensorless Control

Author:

Meng Dongyi12,Wu Qiya12ORCID,Zhang Jia12,Diao Lijun12ORCID

Affiliation:

1. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

2. Key Laboratory of Vehicular Multi-Energy Drive Systems (VMEDS), Ministry of Education, Beijing Jiaotong University, Beijing 100044, China

Abstract

The high-frequency (HF) voltage injection method is widely applied in achieving position-sensorless control for interior permanent-magnet synchronous motors (IPMSMs). This method necessitates precise and rapid extraction of the current signal for accurate position estimation and field-oriented control (FOC). In the traditional methods, the position error signal and fundamental current are extracted from the current signal using band-pass filters (BPFs) and low-pass filters (LPFs), or a method based on time-delay filters. However, the traditional extraction method falls short in ensuring simultaneous dynamic performance and accuracy, particularly when the switching frequency is limited or when encountering harmonic and noise interference. In this article, a novel HF pulsating square-wave voltage injection method based on an improved current signal-extraction strategy is proposed to improve the extraction accuracy while maintaining good dynamic performance. The newly devised current signal-extraction method is crafted upon a notch filter (NF). Through harnessing NF’s effective separation characteristics of specific frequency signals, the current signal is meticulously processed. This process yields the extraction of the position error signal and fundamental-current component, crucial for accurate position estimation and motor FOC. Simulation and hardware-in-the-loop (HIL) testing are conducted to validate the effectiveness of the proposed approach.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3