Distributed High-Density Anchor (Cable) Support Force Monitoring System Research

Author:

Wang Lei1,Sun Kai1,Qi Junyan2,Yuan Ruifu3

Affiliation:

1. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China

2. School of Software, Henan Polytechnic University, Jiaozuo 454000, China

3. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

In shaft mining, monitoring the deformation of the roadway due to mining pressure is of great significance to the safe production of coal mines. For this reason, a distributed high-density anchor (cable) support force monitoring system was designed by developing a low-cost anchor (cable) stress monitoring device, which consists of an anchor (cable) stress sensor and a data acquisition device. The whole system consists of an anchor bar (cable) stress monitoring device and a mine roadway deformation monitoring substation. The signals collected by the anchor force sensors are processed by the data acquisition device and sent to the self-developed mine roadway deformation monitoring substation through Long Range Radio (LoRa) wireless communication. All data from the monitoring substation are transmitted to the ground control center in real time via the Message Queuing Telemetry Transport (MQTT) network transmission protocol. The distributed high-density arrangement of monitoring nodes reflects the deformation trend of the whole section of the roadway by monitoring the anchor bar (cable) support force data of multiple sections, which effectively ensures the safety of the roadway.

Funder

Program for Innovative Research Team (in Science and Technology) at the University of Henan Province

“Double first class” discipline creation project of Henan Polytechnic University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3