Benchmarking Android Malware Analysis Tools

Author:

Bermejo Higuera Javier1ORCID,Morales Moreno Javier1,Bermejo Higuera Juan Ramón1ORCID,Sicilia Montalvo Juan Antonio1ORCID,Barreiro Martillo Gustavo Javier1,Sureda Riera Tomas Miguel1ORCID

Affiliation:

1. Escuela Superior de Ingeniería y Tecnología, Universidad Internacional de La Rioja, Avda. de La Paz 137, 26006 Logroño, La Rioja, Spain

Abstract

Today, malware is arguably one of the biggest challenges organisations face from a cybersecurity standpoint, regardless of the types of devices used in the organisation. One of the most malware-attacked mobile operating systems today is Android. In response to this threat, this paper presents research on the functionalities and performance of different malicious Android application package analysis tools, including one that uses machine learning techniques. In addition, it investigates how these tools streamline the detection, classification, and analysis of malicious Android Application Packages (APKs) for Android operating system devices. As a result of the research included in this article, it can be highlighted that the AndroPytool, a tool that uses machine learning (ML) techniques, obtained the best results with an accuracy of 0.986, so it can be affirmed that the tools that use artificial intelligence techniques used in this study are more efficient in terms of detection capacity. On the other hand, of the online tools analysed, Virustotal and Pithus obtained the best results. Based on the above, new approaches can be suggested in the specification, design, and development of new tools that help to analyse, from a cybersecurity point of view, the code of applications developed for this environment.

Publisher

MDPI AG

Reference50 articles.

1. Hybrid Security Assessment Methodology for Web Applications in Computer Modeling;Correa;Eng. Sci.,2021

2. Attacking malicious code: A report to the Infosec Research Council;McGraw;IEEE Softw.,2000

3. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective, MIT Press.

4. Android Security Team (2024, February 18). Android Open Source Project. Application Security. Available online: https://source.android.com/security/overview/app-security.

5. International Data Corporation (IDC) (2024, February 18). Smartphone Market Share. Available online: https://www.idc.com/promo/smartphone-market-share/os.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3