Design and Optimization of Coil for Transcutaneous Energy Transmission System

Author:

Wu Ruiming12ORCID,Li Haonan12ORCID,Chen Jiangyu12ORCID,Le Qi12ORCID,Wang Lijun3ORCID,Huang Feng12,Fu Yang12ORCID

Affiliation:

1. School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. Zhejiang Provincial Key Laboratory of Food Logistics Equipment and Technology, Hangzhou 310023, China

3. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

Abstract

This article presents a coil couple-based transcutaneous energy transmission system (TETS) for wirelessly powering implanted artificial hearts. In the TETS, the performance of the system is commonly affected by the change in the position of the coupling coils, which are placed inside and outside the skin. However, to some extent, the influence of coupling efficiency caused by misalignment can be reduced by optimizing the coil. Thus, different types of coils are designed in this paper for comparison. It has been found that the curved coil better fits the surface of the skin and provides better performance for the TETS. Various types of curved coils have been designed in response to observed bending deformations, dislocations, and other coupling variations in the curved coil couple. The numerical model of the TETS is established to analyze the effects of the different types of coils. Subsequently, a series of experiments are designed to evaluate the resilience to misalignment and to verify the heating of the coil under conditions of severe coupling misalignment. The results indicated that, in the case of misalignment of the coils used in artificial hearts, the curved transmission coil demonstrated superior efficiency and lower temperature rise compared to the planar coil.

Funder

Natural Science Foundation of Zhejiang Province

“Pioneer” and “Leading Goose” R&D Program of Zhejiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3