An Improved YOLOv5s Model for Building Detection

Author:

Zhao Jingyi1,Li Yifan1ORCID,Cao Jing1,Gu Yutai1,Wu Yuanze1,Chen Chong1,Wang Yingying2

Affiliation:

1. College of Information Science and Engineering/College of Artificial Intelligence, China University of Petroleum (Beijing), Beijing 102249, China

2. College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China

Abstract

With the continuous advancement of autonomous vehicle technology, the recognition of buildings becomes increasingly crucial. It enables autonomous vehicles to better comprehend their surrounding environment, facilitating safer navigation and decision-making processes. Therefore, it is significant to improve detection efficiency on edge devices. However, building recognition faces problems such as severe occlusion and large size of detection models that cannot be deployed on edge devices. To solve these problems, a lightweight building recognition model based on YOLOv5s is proposed in this study. We first collected a building dataset from real scenes and the internet, and applied an improved GridMask data augmentation method to expand the dataset and reduce the impact of occlusion. To make the model lightweight, we pruned the model by the channel pruning method, which decreases the computational costs of the model. Furthermore, we used Mish as the activation function to help the model converge better in sparse training. Finally, comparing it to YOLOv5s (baseline), the experiments show that the improved model reduces the model size by 9.595 MB, and the mAP@0.5 reaches 82.3%. This study will offer insights into lightweight building detection, demonstrating its significance in environmental perception, monitoring, and detection, particularly in the field of autonomous driving.

Funder

National Key R&D Program of China

Natural Science Foundation of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3