Wireless Power Transfer System Model Reduction with Split Frequency Matching

Author:

Wang Ke1,Wu Qingyu2,Peng Jing1,Li Hongchang2ORCID

Affiliation:

1. Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming 650217, China

2. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Reduced-order dynamic models of wireless power transfer (WPT) systems are desired to simplify the analysis and design of power control, phase synchronization, and maximum efficiency tracking. The reduced-order dynamic phasor model is a good choice because of its straightforward physical meaning and concise mathematical formula. However, the model relies on the assumption of loose coupling and loses accuracy when the coupling becomes stronger. In this paper, a model reduction method with split frequency matching is proposed to improve model accuracy under relatively strong coupling conditions, which is suitable for most short-distance WPT applications, such as wireless electrical vehicle charging. Split frequency matching is achieved through a pair of conjugate equivalent mutual inductances, which are derived from the asymmetry characteristics of the full-order dynamic phasor model in the positive and negative frequency domains. The proposed model retains the advantages of the existing model while significantly improving the accuracy under strong coupling conditions. Its characteristics are verified by comparing the experimental results and model predictions under both large step changes and small-signal perturbations.

Funder

China Southern Power Grid

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3