Abstract
Multiplication is a widely used arithmetic operation in microprocessing and digital signal processing applications, and multiplication is realized using a multiplier. This article presents the quasi-delay-insensitive (QDI) early output versions of recently reported indicating asynchronous array multipliers. Delay-insensitive dual-rail encoding is used for data representation and processing, and 4-phase return-to-zero (RTZ) and return-to-one (RTO) handshake protocols are used for data communication. Many QDI array multipliers were realized using a 32/28 nm complementary metal oxide semiconductor (CMOS) technology. Compared to the optimum indicating array multiplier, the proposed optimum early output array multiplier achieves a 6.2% reduction in cycle time and a 7.4% reduction in power-cycle time product (PCTP) with respect to RTZ handshaking, and a 7.6% reduction in cycle time and an 8.8% reduction in PCTP with respect to RTO handshaking without an increase in the area. The simulation results also convey that the RTO handshaking is preferable to the RTZ handshaking for the optimum implementation of QDI array multipliers.
Funder
Ministry of Education - Singapore
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference40 articles.
1. Computer Architecture: A Quantitative Approach;Hennessy,2011
2. DSP Integrated Circuits;Wanhammar,1999
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献