A Rapid Accurate Recognition System for Radar Emitter Signals

Author:

Gao JingpengORCID,Shen LiangxiORCID,Gao LipengORCID,Lu Yi

Abstract

Radar signal recognition is an indispensable part of an electronic countermeasure system. In order to solve the problem that the current techniques have, which is a low recognition rate and a slow recognition speed for radar signals, a rapid accurate recognition system is proposed, especially for when multiple signals arrive at the receiver. The proposed system can recognize eight types of radar signals while separating signals: binary phase shift keying (BPSK), linear frequency modulation (LFM), Costas, Frank code, and P1–P4 codes. Regression variational mode decomposition (RVMD) is explored to separate the received signals, which saves time for parameter optimization of variational mode decomposition (VMD). Furthermore, signal separation and a noise removal technique based on VMD and the first component recognition technique based on a deep belief network (DBN) are proposed. In addition, in order to overcome the loss of the secondary component caused by signal separation, a fusion network is explored to increase the recognition rate of the secondary component in a short time. The simulation results show that the recognition system achieves an overall recognition rate of 99.5% and 94% at a signal-to-noise ratio (SNR) of 0 dB when receiving single signals and double signals, while spending 0.8 s and 2.23 s, respectively. The proposed system can also be used to recognize medical and mechanical signals.

Funder

the Key Laboratory Foundation Project of National Defense Science and Technology Bureau

Shanghai Academy of Spaceflight Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3