Abstract
As one of the key technologies of Honeywell, the aeronautical radio incorporated (ARINC) 659 bus is popular in current space-borne computers. However, Honeywell does not design ARINC 659 bus controller separately, and there are only a few papers about FPGA-based ARINC 659 bus controllers. Accordingly, to promote the extremely high performance needs of space-borne computers, this paper designs an ARINC 659 bus controller chip which integrates two independent bus interface units (BIUs), one 8-bit MCU, and several peripheral interfaces (i.e., UART, SPI, and I2C). Because the two BIUs are identical and mutually checked, the symmetry problem is emphatically dealt with in the design of this bus controller, and effective timing convergence is realized, which makes the bus controller work reliably and stably. In addition, due to the circuit’s large scale, design for testability (DFT) is also considered. Accordingly, on-chip clock (OCC) and scanning compression test technique are used to realize the at-speed test and shorten the test time, respectively.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献