Privacy-Preserving Distributed Deep Learning via Homomorphic Re-Encryption

Author:

Tang FengyiORCID,Wu Wei,Liu Jian,Wang Huimei,Xian Ming

Abstract

The flourishing deep learning on distributed training datasets arouses worry about data privacy. The recent work related to privacy-preserving distributed deep learning is based on the assumption that the server and any learning participant do not collude. Once they collude, the server could decrypt and get data of all learning participants. Moreover, since the private keys of all learning participants are the same, a learning participant must connect to the server via a distinct TLS/SSL secure channel to avoid leaking data to other learning participants. To fix these problems, we propose a privacy-preserving distributed deep learning scheme with the following improvements: (1) no information is leaked to the server even if any learning participant colludes with the server; (2) learning participants do not need different secure channels to communicate with the server; and (3) the deep learning model accuracy is higher. We achieve them by introducing a key transform server and using homomorphic re-encryption in asynchronous stochastic gradient descent applied to deep learning. We show that our scheme adds tolerable communication cost to the deep learning system, but achieves more security properties. The computational cost of learning participants is similar. Overall, our scheme is a more secure and more accurate deep learning scheme for distributed learning participants.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference31 articles.

1. Artificial Intelligence: A Modern Approach;Russell,2016

2. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach

3. Big IoT data analytics: Architecture, opportunities, and open research challenges;Marjani;IEEE Access,2017

4. Heat Exchanger Control Based on Artificial Intelligence Approach;Jamal;Int. J. Appl. Eng. Res. (IJAER),2016

5. Deep learning

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3