Application of Genetic Algorithms for Strejc Model Parameter Tuning

Author:

Ostaszewicz Dawid1,Rogowski Krzysztof1ORCID

Affiliation:

1. Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D Street, 15-351 Bialystok, Poland

Abstract

In this paper, genetic algorithms are applied to fine-tune the parameters of a system model characterized by unknown transfer functions utilizing the Strejc method. In this method, the high-order plant dynamic is approximated by the reduced-order multiple inertial transfer function. The primary objective of this research is to optimize the parameter values of the Strejc model using genetic algorithms to obtain the optimal value of the integral quality indicator for the model and step responses which fit the plant response. In the analysis, various structures of transfer functions will be considered. For fifth-order plants, different structures of a transfer function will be employed: second-order inertia and multiple-inertial models of different orders. The genotype structure is composed in such a way as to ensure the convergence of the method. A numerical example demonstrating the utility of the method of high-order plants is presented.

Publisher

MDPI AG

Reference21 articles.

1. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Company, Inc.

2. Man, K.F., Tang, K.S., and Kwong, S. (2001). Genetic Algorithms: Concepts and Designs, Springer.

3. Sivanandam, S., and Deepa, S. (2008). Introduction to Genetic Algorithms, Springer.

4. System identification and control using genetic algorithms;Kristinsson;IEEE Trans. Syst. Man Cybern.,1992

5. Nonlinear model structure identification using genetic programming;Gray;Control. Eng. Pract.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3