A Fully Synthesizable Fractional-N Digital Phase-Locked Loop with a Calibrated Dual-Referenced Interpolating Time-to-Digital Converter to Compensate for Process–Voltage–Temperature Variations

Author:

Kim Seojin1ORCID,Kim Youngsik1ORCID,Son Hyunwoo2ORCID,Kim Shinwoong1ORCID

Affiliation:

1. Department of Computer Science and Electrical Engineering, Handong Global University, 558, Handong-ro, Buk-gu, Pohang-si 37554, Gyeongsangbuk-do, Republic of Korea

2. School of Electronic Engineering, Engineering Research Institute (ERI), Gyeongsang National University, 501, Jinju-daero, Jinju-si 52828, Gyeongsangnam-do, Republic of Korea

Abstract

This paper presents advancements in the performance of digital phase-locked loop (DPLL)s, with a special focus on addressing the issue of required gain calibration in the time-to-digital converter (TDC) within phase-domain DPLL structures. Phase-domain DPLLs are preferred for their simplicity in implementation and for eliminating the delta–sigma modulator (DSM) noise inherent in conventional fractional-N designs. However, this advantage is countered by the critical need to calibrate the gain of the TDC. The previously proposed dual-interpolated TDC(DI-TDC) was proposed as a solution to this problem, but strong spurs were still generated due to the TDC resolution, which easily became non-uniform due to PVT variation, degrading performance. To overcome these problems, this work proposes a DPLL with a new calibration system that ensures consistent TDC resolution matching the period of the digitally controlled oscillator (DCO) and operating in both the foreground and background, thereby maintaining consistent performance despite PVT variations. This study proposes a DPLL using a calibrated dual-interpolated TDC that effectively compensates for PVT variations and improves the stability and performance of the DPLL. The PLL was fabricated in a 28-nm CMOS process with an active area of only 0.019 mm2, achieving an integrated phase noise (IPN) performance of −17.5 dBc, integrated from 10 kHz to 10 MHz at a PLL output of 570 MHz and −20.5 dBc at 1.1 GHz. This PLL operates within an output frequency range of 475 MHz to 1.1 GHz. Under typical operating conditions, it consumes only 930 µW with a 1.0 V supply.

Funder

Handong Global University Research Grants

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3